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Abstract
Global navigation satellite system (GNSS) positioning in urban areas does not currently provide accurate and stable per-
formance because surrounding buildings can block and reflect satellite signals. However, if we can determine the environ-
ment in which the receiver is located, appropriate positioning can be applied. For example, GNSS real-time kinematic and 
3D-mapping-aided GNSS (3DMA GNSS) are used for positioning in open sky and urban areas, respectively. Thus, the 
context awareness of the GNSS receiver is important. In fact, an urban canyon can be further categorized into different levels 
based on sky visibility. We propose an innovative algorithm based on this categorization, which can provide information on 
surrounding buildings and give an estimation of sky visibility from raw GNSS measurements. This idea was inspired by the 
use of low-orbit satellite data for remote sensing applications. The recent development of multi-GNSS has led to a notable 
increase in the number of navigation satellites. Crucially, the visibility of satellites and the blockage of line-of-sight satellite 
signals are representative of the surrounding environment. The visibility of satellites can be classified by machine learning 
techniques, and an accurate classification can afford an estimation that is close to the real-sky visibility, as derived from a 
3D building model and ground truth location. To assess the sensitivity of our proposed sky visibility estimation algorithm, 
we simulate different classification accuracies to investigate their effect on the performance of the algorithm.

Keywords Context awareness · 3DMA GNSS · Urban canyons

Introduction

Positioning services based on global navigation satellite 
systems (GNSSs) are in worldwide daily use. An important 
application of such GNSS positioning is pedestrian naviga-
tion in cities. However, GNSS positioning performance in 
an urban canyon is not satisfactory, due to the surrounding 
buildings blocking or interfering with some satellite signals. 
This can lead to GNSS positioning errors of more than one 
hundred meters in urban areas (Hsu 2018).

3D-mapping-aided (3DMA) GNSS positioning is a popu-
lar approach for improving this urban GNSS positioning per-
formance, in which 3D building models are used to predict 

the visibility of the satellite and simulate the transmitting 
path and carrier-to-noise ratio (C/N0) of satellite signals. 
Then, satellites can be categorized as line-of-sight (LOS) 
or non-line-of-sight (NLOS), and the user position can be 
determined by a process called shadow matching, i.e., com-
paring the measured and predicted satellite visibility over 
hypothesized candidate locations (Groves 2011). The 3D 
building model of 3DMA GNSS is also used to predict the 
path delay and C/N0 of NLOS reception and thus create a 
virtual pseudorange by ray tracing (Suzuki and Kubo 2012; 
Nicolás et al. 2013; Hsu et al. 2016). Moreover, the user 
position can be calculated by a process called likelihood-
based 3DMA GNSS ranging, which involves determining 
the likelihood score from a comparison of the estimated 
pseudorange and measured pseudorange over many can-
didate locations (Groves and Adjrad 2017). Furthermore, 
likelihood-based 3DMA GNSS ranging can be integrated 
with shadow matching, to take advantage of the good across-
street performance of shadow matching (Adjrad and Groves 
2018).
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Recent research has shown that the performance of 
the above 3DMA GNSS positioning algorithm is highly 
dependent on sky visibility (Adjrad et al. 2018). Sky vis-
ibility is an index used to describe the percentage of the 
sky that is visible from a sky-pointing fish-eye camera and 
can be considered as representing the different levels of 
urban canyons. Thus, a fish-eye image is taken to represent 
sky visibility and is denoted a skymask. In the absence of 
fish-eye imagery, a skymask can also be formed from a 
skyplot based on a surrounding 3D building. Illustrations 
of a fish-eye camera image, a skymask from the fish-eye 
camera, and a skymask from the 3D building model are 
shown in Fig. 1.

Sky visibility for the skymask generated from the 3D 
building model is calculated by the elevation angle of the 
building boundary over each azimuth angle, expressed as

where eleaz is the elevation angle of a particular azimuth 
angle az , which ranges from 1◦ to 360◦ . In this study, we 
conduct an experiment to investigate the correlation between 
sky visibility and the positioning errors of different GNSS 
positioning solutions, namely the errors of a National Marine 
Electronics Association (NMEA) solution output from a 
commercial GNSS receiver, a conventional weighted least 
squares (WLS) method, a GNSS shadow matching method 

(1)sky_vis =

∑360◦

az=1◦
eleaz

90◦ × 360◦

(Wang et al. 2013), and a skymask-based 3DMA GNSS 
method (Ng et al. 2020). The results are shown in Fig. 2. 
The experimental locations are shown in the experimental 
and result sections.

The settings of these algorithms are as follows,

1. Conventional WLS: This algorithm is based on the 
open-source code of GoGPS version 0.4.3 (Herrera et al. 
2015).

2. Shadow matching: The satellite visibility is labeled 
by the ground truth location and 3D building model, 
and the hypothesized grids are distributed based on the 
ground truth location. The radius of the searching circle 
is 30 m (Wang et al. 2013).

3. Skymask-based 3DMA GNSS: This is a computationally 
efficient ray-tracing 3DMA GNSS method and has the 
same setting as (2) (Ng et al. 2020).

From Fig. 2, it is clear that the performance of these algo-
rithms varies with sky visibility, with each algorithm per-
forming best in different sky visibility conditions. Thus, we 
aim to develop an algorithm that can estimate the sky vis-
ibility and detect the context of urban canyons.

For a context-aware algorithm, the context is the sur-
rounding environment of the user, and the environment 
is categorized as indoor, outdoor, or semi-outdoor (Zhou 
et al. 2012). Most context-aware approaches use informa-
tion from an inertial measurement unit (IMU) (Capurso 

Fig. 1  Demonstration of an 
image from a fish-eye camera 
(left), the skymask from the 
fish-eye image (middle), and 
the skymask from a 3D build-
ing model (right). There are 
slight sky visibility differences 
between the two skymasks

Fig. 2  Performance of different 
GNSS solutions in different sky 
visibility conditions
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et al. 2017), Wi-Fi, GNSS signals (Groves et al. 2013), 
Bluetooth signals (Zou et al. 2016), cellular signals (Wang 
et al. 2016), or a sound probe (Sung et al. 2015). For con-
text detection algorithms using GNSS signals, the received 
signal strength and the number of received satellites are 
the input features that are used to train the classifier to 
categorize the environment as outdoor or indoor (Gao 
and Groves 2018). Furthermore, the GNSS signals give 
an indication of the environment category and can also be 
used to describe the surrounding environments. For exam-
ple, research reveals that the reflection of GNSS signals 
can be used to rectify the 2D position of building models 
(Wada et al. 2017). Other recent work shows that the vis-
ibility of a GNSS satellite may be used to classify the envi-
ronmental situation of around railways (Tan et al. 2019).

Our major innovation is to use the visibility of the satel-
lites, which is obtained using the above-mentioned GNSS 
features, to categorize the outdoor environment in terms 
of sky visibility. To the best of our knowledge, this is the 
first attempt to estimate the sky visibility and the boundary 
of surrounding buildings (i.e., the skymask) using only the 
GNSS signal, without using information from 3D building 
models or fish-eye camera images. Crucially, this means 
our algorithm could be embedded in most GNSS receivers, 
even those without connectivity.

An overview of the proposed method is given in the 
following section. Subsequently, the detail of the proposed 

sky visibility estimation algorithm is introduced. Then, 
simulation and experiment results are evaluated. Finally, 
conclusions are drawn, and future work is suggested.

Overview of the proposed sky visibility 
estimation algorithm

The flowchart of the proposed skymask estimation algorithm 
is shown in Fig. 3. The GNSS measurements and ephem-
eris data of satellites are used as the inputs. To classify the 
visibility of satellites, features that are related to satellite 
visibility are extracted. For the RINEX level LOS/NLOS 
classification (Yozevitch et al. 2016; Hsu 2017; Sun et al. 
2019), features include C/N0, elevation angle, pseudorange 
residuals, and pseudorange rate. These features can be 
acquired from the raw measurements, and position can be 
estimated by directly using conventional WLS. The accuracy 
of the LOS/NLOS classification can be further improved 
if the correlator-level measurements are available (Xu and 
Luo 2019), and if the deep learning approach is applied for 
detecting the NLOS and the multipath for indoor positioning 
(Liu et al. 2019).

The classification reveals the visibility of satellites 
as LOS or NLOS. In addition, the elevation and azimuth 
angles of the non-tracked satellites are calculated from the 
approximate user position and the satellite ephemeris data. 

Fig. 3  Flowchart of the 
proposed skymask estimation 
algorithm. After several steps, 
the sky visibility of the user 
position can be derived from the 
GNSS measurements (where 
SVM = support vector machine)

Feature extraction

SVM-based machine 
learning classifier

Classified satellite
Visibilities (SV) 

Sky Outline
Estimation 

Building Outline 
Estimation

 building boundary,

Detection of the inconsistency 
between SV and 

GNSS
measurements 

Estimated Sky 
Visibility

Broadcast
ephemeris 

Rectification of the
building boundary

First estimation of



 GPS Solutions           (2020) 24:59 

1 3

   59  Page 4 of 15

The non-tracked satellite signal is usually considered to be 
blocked by the surrounding buildings, and this satellite is 
therefore denoted as NLOS. Thus, by taking the non-tracked 
satellites into consideration, more information can be gar-
nered on building geometry.

Based on the visibility of satellites, the skymask can be 
estimated by the following steps. For an LOS satellite, the 
signal is directly acquired by the receiver, which means that 
the elevation angle of the satellite is greater than the high-
est elevation angle of the surrounding building edges over 
the same satellite azimuth angle. Thus, a large number of 
LOS satellites can provide elevation angles without blockage 
over many azimuth angles, which can be used to estimate 
the sky outline. Analogously, as an NLOS satellite has a 
lower elevation angle, its signal is blocked by the surround-
ing buildings, which means that the azimuth and elevation 
angles of a large number of NLOS satellites can be used 
to estimate a building outline. The satellite information for 
skymask estimation is shown in Table 1. The skymask gen-
erated from LOS, NLOS, and non-tracked satellites data is 
shown in Fig. 4.

Moreover, it is obvious that the elevation angles of build-
ing boundaries are between those of the sky and building 
outlines. Thus, if the estimation of the building boundary is 
accurate, the difference between the real and estimated sky-
mask is small enough to be used to categorize the different 
levels of an urban canyon.

Sky visibility estimation algorithm

Three kinds of outlines are estimated: sky outline, building 
outline, and building boundary (Fig. 4). The outline can be 
described as a subset of elevation angles indexed by azimuth 
angles and is therefore denoted as

A brief description of the algorithm is given as follows. 
First, the elevation and azimuth angles of LOS and NLOS 
can be used to predict the sky and building outlines, respec-
tively, using a curve-fitting function. Then, the building 
boundary is obtained by combining appropriately weighted 

ol(az) = ele where az = 1◦, 2◦,… , 360◦

sky and building outlines. Then, since the first estimation of 
the building boundary may be inconsistent with the satellite 
visibility as LOS or NLOS, we rectify the building boundary 
based on the inconsistency. The detail of the algorithms is 
presented in the following subsections.

Sky outline estimation algorithm

Here, the elevation and azimuth angles of LOS satellites are 
used to fit a curve that represents the outline of a clear sky. 
From Fig. 4, it can be seen that if two LOS satellites are 
located at a similar azimuth angle, the LOS satellite with a 
low elevation angle is closer to the sky outline than that with 
a high elevation angle. Therefore, LOS satellites with a high 
elevation angle contribute less to the estimation.

Moreover, LOS satellites with relatively low elevations 
are selected to compute the elevation angle of the skyline 
in the first estimation of the building boundary. Briefly, 
we examine a 10° range of the azimuth angle, and if this 
range contains more than one LOS satellite, we select the 
LOS satellite with the lowest elevation angle. The selected 
LOS satellites are then used in a curve-fitting function to 
generate the sky outline. However, there may be situa-
tions where most satellite signals are blocked by the sur-
rounding buildings in deep urban canyons; in such a case, 
the number of LOS satellites is very low, and thus there 
are insufficient data for estimating the sky outline across 
360° of azimuth angles. An example of this situation is 

Table 1  Use of different types of satellites in the proposed skymask 
estimation

Visibility Usage

Satellite type
 Tracked and classified LOS Sky estimation

NLOS Blockage estimation
 Non-tracked NLOS Blockage estimation

Building outlines
Building boundary

LOS
NLOS 

Non-tracked
Sky outlines 

Fig. 4  Demonstration of the skymask obtained from signals from 
LOS, NLOS, and non-tracked satellites. In this urban area, some sat-
ellites cannot be tracked by the receiver
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shown in Fig. 5, wherein it can be seen that there is no 
LOS satellite in the azimuth angle range of 0–120°, thus 
making it difficult to estimate the skyline. Therefore, a 
threshold for skyline estimation should be set, based on 
the number of selected LOS satellites, such that when the 
number of selected LOS satellites is less than this thresh-
old, the skyline is impossible to be estimated and set to 
a default elevation angle of 90° for every azimuth angle. 

In our algorithm, the threshold of selected LOS satellites 
is set as 5.

In addition, two unsatisfactory types of satellite distri-
bution lead to poor satellite geometries and thus poor esti-
mation. First, a poor distribution of satellites will lead to 
an azimuth gap between two selected satellites that is too 
large, thus negatively affecting the estimation. Second, if 
the elevation angle of the selected satellite is far away from 
the building boundary, a large elevation gap will exist in the 

Fig. 5  Example of a spread sky-
plot of satellite distribution in a 
deep urban canyon. The number 
indicates the pseudo-random 
noise (PRN) of the satellite
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Fig. 6  Demonstration of a 
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showing gaps in azimuth and 
elevation angles that results 
from poor satellite geometry. 
The number indicates the PRN 
of a satellite
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estimation. The results of these poor satellite geometries are 
demonstrated in Fig. 6.

To mitigate the effect of azimuth gap, we use different 
approaches according to the category of the azimuth angle 
gap, as shown in Table 2. The small-sized gap is ignored. 
Thus, for a middle-sized gap, we hypothesize two virtual 
satellites by linear interpolation from the two satellites that 
form the gap. For a large-sized gap, we hypothesize that vir-
tual satellites with a default elevation angle (85° for skyline 
estimation) are located within these azimuths.

The sky outline, s , is estimated by fitting the LOS satel-
lites into a smoothing spline model, which is an optimization 
problem. Its cost function is given as follows:

(2)argmin
olsky

⎛⎜⎜⎝
p
�
i

wi.los

�
ele

i
− ol

�
az

i

��2
+ (1 − p)

360◦

∫
0◦

�
d2olsky(az)

daz2

�2

daz

⎞⎟⎟⎠

where az
i
 and ele

i
 denote the azimuth and elevation angles 

of the LOS satellite i, respectively, p denotes a smoothing 
parameter that is tuned heuristically, and wi is the weighting 
given the satellite i. The weighting is calculated as follows:

where k is a scaling factor that is heuristically set to 100. The 
lower the elevation the weighting scheme is based on, the 
higher the weighting. By this optimization procedure, the 
sky outline can be effectively estimated even in conditions 
of poor satellite geometry. A result of the proposed skyline 

(3)wi.los = k ⋅

√
1 −

elei

90

Table 2  Categories of azimuth angle gap and how these are mitigated

Category Approach

Azimuth gap (°)
 0–60 Small Ignore
 60–120 Middle Hypothesize virtual 

satellites and set their 
elevation angles by linear 
interpolation

 120–360 Large Hypothesize virtual satel-
lites and assign these a 
default elevation angle

Fig. 7  Example of the proposed 
sky outline estimation algo-
rithm. The weighting scheme 
and hypothesized satellites 
mitigate the effects of gaps on 
azimuth and elevation
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estimation is demonstrated in Fig. 7, and the algorithm is 
summarized in Fig. 8.

Building outline estimation algorithm

The building outline estimation procedure is similar to that 
of the sky outline estimation but uses NLOS satellites. After 
selecting the blocked satellites, this procedure also encoun-
ters similar problems to those seen in the sky outline esti-
mation, namely low satellite numbers, resulting in azimuth 
and elevation gaps. As before, certain categories of satellites 
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are hypothesized to fill the azimuth gap, and the weight of a 
blocked satellite i is calculated as

The weighting scheme is designed such that the higher the 
elevation of the NLOS satellite, the higher its weight. The 

(4)wi.nlos = k ⋅

√
elei

90

default elevation of a hypothesized satellite in a large azi-
muth gap is 5°. An example is shown in Fig. 9.

Building boundary estimation algorithm

Once the outlines of the sky and the buildings are obtained, the 
building boundary can be estimated by a weighting method. 
The estimated elevation of the boundary is expressed as

Fig. 8  Flowchart of the sky 
outline estimation LOS 

satellites
Select satellites with low 

elevation angle

If selected
satellites < 5  

Detect the middle- and
Large- sized gaps

Set the hypothesized 
virtual satellites  

Set sky outline to a 
 default elevation 
angle of 85° in all 
azimuth angles 
(default model)N

Y

Curve-fit the satellites 
to a smoothing spline model

Estimated sky outline

Fig. 9  Example result of the 
proposed building outline esti-
mation algorithm. The weight-
ing scheme and hypothesized 
satellites are also applied in this 
case
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where elei
sky

 and elei
building

 are the estimated elevation at azi-
muth i of the skyline and the building, respectively, and 
wscene is a weighting factor. The weighting method is 
designed to make adaptive changes under different levels of 
sky visibility. For example, in an area with high sky visibil-
ity (i.e., a relatively open sky area), the weight of the build-
ing outline is greater than that of the sky outline, since there 
is sufficient sky outline information, and we wish to abstract 
more building information. Conversely, in a deep urban can-
yon, there is abundant building outline information but 
insufficient sky outline information, and thus a higher 
weighting is given to the sky outline in this case. 

(5)elei
boundary

= elei
sky

∗ wscene + elei
building

∗ w−1
scene

disagrees with the classified visibility of the satellite (i.e., 
LOS and NLOS) in some azimuths, as shown in the deep 
urban case. The inconsistent satellites are highlighted in 
the figure, and these satellites are grouped into a subset 
that is denoted as SVinconsistent . These inconsistencies are 
caused by the fitting method and the fact that the weight-
ing function is not perfect; as a result, the first estimated 
boundary must be rectified to match the actual satellite 
visibility.

Boundary rectification algorithm

To solve the inconsistency of the satellite visibility, we 
adjust the elevation angle of the first estimated boundary 
as follows:

where elebias is the elevation bias used to include the build-
ing-edge uncertainty and is set as 3°. After this, the adjusted 
building boundary is again optimized by (2) to fit the smooth 
spline model and thus to rectify the building boundary. The 
weighting factor should be revised to account for the azi-
muth angle of the inconsistency ( azj , j ∈ SVinconsistent ). We 
empirically set the weighting of these adjusted elevation 
angles to be three times more than that of the non-adjusted 
elevation angles. The resulting rectified building boundary, 
which we denote a skymask, is shown in Fig. 11. The rec-
tified boundary estimation is closer to the actual building 
outline, as compared to the first boundary estimation.

(7)oladjusted
(
azj

)
=

{
olfirst

(
azj

)
− elebias, if sv j is LOS

olfirst
(
azj

)
+ elebias, if sv j is NLOS

where j ∈ SVinconsistent

Sky outlines Inconsistent satelliteBuilding outlines Boundary outline

Fig. 10  Example of the first estimation of building boundaries in different sky visibility situations. The first estimation provides approximate sky 
visibility, with some satellites being inconsistent with the estimated visibility boundary

Accordingly, we use a scene-adaptive weighting scheme that 
is calculated by

where Nlos , Nnlos , and Nnon_tracked are the number of LOS sat-
ellites, NLOS satellites, and non-tracked satellites, respec-
tively. The estimated building boundary (skymask) of low 
(left), middle (middle), and high (right) sky visibility with 
boundary estimation is shown in Fig. 10.

From Fig. 10, it can be seen that the estimated bound-
ary indicates the extent of sky visibility and is close to the 
real building boundary. However, the estimated boundary 

(6)wscene =
Nnlos + Nnon_tracked

Nlos
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After considering the inconsistency of the satellite visibil-
ity, the sky visibility can be estimated based on the rectified 
building boundary:

The estimated sky visibility indicates the percentage of the 
sky from the user location, which could be considered as a 
reference for different positioning approaches as mentioned 
in the Introduction section.

To summarize, the proposed method first uses the raw 
GNSS measurements to classify the GNSS signal visibili-
ties as LOS or NLOS, and then these visibilities are used to 
determine the sky visibility of the environment in which the 
receiver is located. The performance of the proposed method 
is evaluated in the following section.

Experiment and results

To verify the proposed skymask estimation algorithm, we 
performed static experiments at 10 different locations in 
Hong Kong, as shown in Fig. 12 (top). At each location, 
a u-blox F9T receiver was used to collect approximately 
15 min of GNSS signals, namely GPS, GLONASS, and 

(8)sky_vis =

∑360◦

az=1◦
olrectified(az)

90◦ × 360◦

BeiDou signals. This enabled locations to be sorted by sky 
visibility, from low to high, as shown in the bottom panel.

We first evaluate the proposed method based on the per-
fect LOS/NLOS classifications of the data, which are made 
by reference to ground truth location and a 3D building 
model. We also evaluate the proposed method by altering the 
LOS/NLOS classification accuracy. Finally, we discuss the 
result of the proposed skymask estimation, based on our pre-
viously developed machine learning classifier (Hsu 2017).

Performance with the perfect LOS/NLOS 
classification

In this experiment, the LOS/NLOS classification is based on 
the ground truth location and the surrounding 3D building 
models, where the latter are obtained from Google Earth and 
have an accuracy of approximately 1 m. In Table 3, the mean 
and standard deviation of the sky visibility of the estimated 
boundary are compared with the real-sky visibility.

According to Table 3, the difference between the esti-
mated and the real-sky visibilities is less than approximately 
5% in most of the locations, and the estimated sky visibility 
is stable, with a standard deviation of less than 3%. However, 
the estimation of sky visibility in a deep urban area, such as 

Fig. 11  Demonstration of the building boundary estimation before 
(first estimation) and after rectification. The rectification improves the 
performance of sky visibility estimation
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Fig. 12  Locations of the static experiments in urban canyons of Hong 
Kong (from Google Maps) (top), and the sky visibilities of these 
locations (bottom)
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P1, is poor. This is primarily attributable to the limited num-
ber of LOS satellites visible from these deep urban areas. 
The skymask of P1 with boundary estimation and rectifica-
tion is shown in Fig. 13.

In the P1 case, there is only one LOS satellite visible, 
which makes it difficult to find the correct sky outline. For 
example, the estimation of the framed area cannot be recti-
fied by data from LOS satellites, due to the poor satellite 
geometry. Similar problems exist in the middle urban can-
yon, P4; its results from two epochs are shown in Fig. 14.

In a short period, no overlap of satellite areas occurs, and 
thus reference elevations for use in estimation are not avail-
able. This underscores that the solution of satellite geom-
etry is a considerable challenge for future improvements to 
skymask estimations in these urban canyon environments.

Performance with different LOS/NLOS classification 
accuracies

Classification accuracy is vital to the performance of the 
proposed algorithm because the estimations of the sky and 
building outlines are largely based on satellite visibility. To 
delineate the effect of classification accuracy on sky visibil-
ity estimation, we simulate the performance of the proposed 
estimation algorithm utilizing data with different classifica-
tion accuracies, where the minimum accuracy is 50%. When 
the classification accuracy is less than 50% accurate, the 

Table 3  Mean and standard 
deviation of the real and 
estimated sky visibility at 
different locations in Hong 
Kong

Locations P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Real-sky visibility (%) 16.69 23.20 29.82 39.66 51.42 58.63 63.88 74.61 82.04 87.85
Mean of estimated visibility (%) 25.74 27.31 25.97 44.60 46.12 61.69 60.47 68.78 82.78 86.16
SD of estimated visibility (%) 0.96 2.74 1.90 0.58 0.58 1.13 2.43 1.24 1.32 2.18

Fig. 13  Demonstration of the estimated building boundary in a deep 
urban canyon (P1) before and after the rectification. The brown-
shaped ellipse indicates an estimated area that is not able to be rec-
tified, due to the poor geometry of satellites providing insufficient 
information. The rest of the first estimated boundary in the diagram 
has the same geometry as the rectification

Fig. 14  Skymask of P4 with 
boundary estimation and 
rectification at epoch 1 (left) 
and epoch 724 (right). The 
brown-shaped ellipse indicates 
estimated areas that cannot be 
rectified due to poor satellite 
geometry providing insufficient 
information



GPS Solutions           (2020) 24:59  

1 3

Page 11 of 15    59 

classification method is less accurate than tossing a coin. 
For the classification simulation, the satellite visibility is 
classified by ground truth and 3D building models, and then 
a random satellite is selected and its visibility is switched 
to the other type. In this manner, the classification accuracy 
is decreased as the number of satellites selected increases. 
We run this simulation 100 times, and the mean of the sky 
visibility estimated by the proposed algorithm with different 
classification accuracies utilized is shown in Fig. 15.

From Fig. 15, it can be seen that the performance of the 
algorithm in low and high real-sky visibility situations is 
highly correlated with the classification accuracy. In these 
situations, there are few satellites of one kind of satellite 
visibility, i.e., few LOS satellites in the low real-sky vis-
ibility (deep urban) situation, or few NLOS satellites in the 
high real-sky visibility (slight urban) situation. Therefore, 
the outlines estimated from these situations will be far from 
the real outlines when these satellites are misclassified.

However, it is interesting to note that in the medium 
real-sky visibility situation (Fig. 15, middle), the estimated 
sky visibility is insensitive to the classification accuracy. 
This is attributable to the failure of the LOS/NLOS clas-
sification, which results in the mean elevation angle of esti-
mated boundary outlines being nearly 45° according to the 
weighting method of the proposed algorithm, which thus 
makes the sky visibility approximately 50%. The skymask 
for middle real-sky visibility (middle urban) with boundary 
estimation and rectification, which shows a 50% and 100% 

classification accuracy, is shown in Fig. 16. As can be seen, 
different classification accuracies have only a minimal effect 
on the estimated sky visibility in medium-urban areas.

Performance with two different LOS/NLOS 
classification approaches

In this section, two kinds of conventional classification algo-
rithms are used: a simple signal-to-noise ratio (SNR) clas-
sifier and an SVM-based machine learning classifier incor-
porating several GNSS features (Hsu 2017). The SNR is 
typically used to indicate the quality of the received signal. 
In general, an NLOS satellite gives a low received signal 
strength; thus, a simple threshold of SNR can be set to clas-
sify satellite visibility. For our u-blox F9T device, we set the 
SNR threshold to 35 dB and define the satellite visibility as

The accuracy of SNR classification and the mean of 
estimated sky visibility are shown in Tables  4 and 5, 
respectively.

As shown in Table 4, the classification accuracy of P1 
is 92.1% and its mean estimated sky visibility is 27.51%, 
which is similar to the performance obtained with perfect 
classification (25.74%). In addition, the estimated sky vis-
ibilities of P8, P9, and P10 are close to 60%, which matches 

(9)Visibility =

{
LOS if SNR ≥ 35 dB

NLOS if SNR < 35 dB
.

Fig. 15  Mean of estimated 
sky visibility with different 
classification accuracies in low 
real-sky visibility (top), medium 
real-sky visibility (middle), and 
high real-sky visibility (bottom) 
situations
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the earlier simulations of classification accuracy in slight 
urban locations. For the medium-urban canyons P4 and P5, 
the mean of the estimated sky visibility is close to the real 
visibility, since there are enough satellites to aid both sky 
outline and building outline estimation.

It can be seen from Table 5 that the standard deviation of 
the estimated sky visibility according to SNR classification 
varies greatly. In comparison with that of perfect classifica-
tion, the standard deviation of the estimated sky visibility 
with SNR classification is greater than 3% in most of the 
locations. This is because the SNR classification of satel-
lite visibility changes greatly across a range of epochs, thus 
causing substantial variations in building boundary estima-
tion. The skymasks at P6, with boundary estimation and 
rectification by SNR classification at epochs 130, 131, and 
132, are shown in Fig. 17.

From Fig. 17, it can be seen that satellites 25, 87, 89, and 
93 are misclassified as NLOS at epoch 130 (top) and that sat-
ellite 25 is correctly classified as LOS at epoch 131 (middle). 
This leads to a larger sky outline and higher sky visibility 
at epoch 131 compared with that at epoch 130. Moreover, 
by comparing the visibility at epoch 131 with that at epoch 
132, the NLOS satellite 34 is misclassified as LOS at epoch 

132 (bottom), accounting for an approximately 5% increase 
in the estimated sky visibility. Overall, the misclassification 
and inconsistency of SNR classification result in a relatively 
large error with a large standard deviation.

In the proposed algorithm, an SVM classification is used, 
comprising the following features: signal-to-noise ratio 
(SNR), elevation angle, normalized pseudorange residual, 
and pseudorange rate consistency (Hsu 2017). The kernel 
function of SVM classification is a radial basis function, 
and the SVM model is trained by the dataset of 60 percent 
of samples, which are randomly selected from all locations. 
The SVM classification accuracy is shown in Table 6, and 
the mean and standard deviation of the estimated sky vis-
ibility based on the SVM classification are shown in Table 7.

It can be seen in Table 6 that the SVM classification 
accuracy of P1, P2, and P3 exceeds 95%, showing that the 
estimation of these locations is close to that obtained from 
perfect classification. In addition, the differences in the mean 
of the estimated sky visibility between SVM classification 
and perfect classification are only 0.94%, 0.72%, and 1.29% 

Fig. 16  Demonstration of the 
skymask in medium-urban 
areas, with boundary estima-
tion and rectification, and using 
data with 50% classification 
accuracy (left) and 100% clas-
sification accuracy (right)

Table 4  Classification accuracy 
of SNR classification

Location P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Classification accuracy (%) 92.1 85.5 86.2 78.5 83.8 80.0 77.3 62.5 65.3 68.4

Table 5  Mean and standard 
deviation of sky visibility 
according to SNR classification

Location P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Real visibility (%) 16.69 23.20 29.82 39.66 51.42 58.63 63.88 74.61 82.04 87.85
Mean of estimated visibility (%) 27.51 32.92 29.34 37.00 48.76 51.72 47.66 52.40 57.82 60.60
STD of estimated visibility (%) 2.37 5.59 4.06 6.18 2.77 5.56 3.67 5.16 0.90 2.37
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for P1, P2, and P3, respectively. However, due to the imper-
fect satellite distribution, biases remain in these sky vis-
ibility estimations.

Conclusions and future work

We develop a sky visibility estimation algorithm based on sat-
ellite visibility. We estimate the outlines of sky and buildings 
by fitting the curve of data into a smoothing spline model, 
and the boundary of surrounding buildings is then computed 
by an adaptive weighting scheme that reveals the scene at the 
receiver’s location. Moreover, the boundary estimation is rec-
tified to eliminate the inconsistencies between the classified 
satellite visibility and the first estimated building boundary. If 
a perfect LOS/NLOS classification is available, the proposed 
sky visibility estimation can achieve a result very similar to 
the actual sky visibility. Furthermore, even if only a machine 
learning-based classifier is available, the proposed method can 
still obtain good performance in middle and deep urban can-
yons, where such performance is needed most.

Sky visibility can identify different levels of urban coverage 
and is known to affect the performance of different positioning 
systems. In future work, we will use our method to improve 
the performance of a loosely coupled GNSS/INS (integrated 
navigation system). In addition, we will improve our classifica-
tion with different types of signals, and its ability to deal with 
the many reflected and refracted signals from various obstruc-
tions in urban areas, such as trees or power lines. The effect of 
these obstructions on signal features, e.g., frequency, correla-
tion value, and chip delay, needs to be further researched with 
the use of a software-defined receiver.

Currently, our estimation algorithm uses the epoch-by-
epoch visibility of satellites without considering their temporal 
connectivity, and the least-squares positioning is only used for 
deriving features for signal classification. Thus, we will also 
attempt to take a raw position as environmental information to 
improve the performance of our algorithm since this raw infor-
mation may vary according to its environments, such as deep 
urban, middle urban, slight urban, and open sky. Moreover, 
with an exact building boundary estimation, this algorithm will 
be applied to the selection of different positioning approaches, 
which will contribute to the development of a context-aware 
navigation scheme (Groves et al. 2013).

Rectified building outline
Misclassified satellites

Rectified building outline
Misclassified satellites

Rectified building outline
Misclassified satellites

Fig. 17  Demonstration of the skymask with boundary estimation and 
rectification at P6 in three epochs. At epoch 130 (top), the estimated 
sky visibility is 42.91%. At epoch 131 (middle), the estimated sky 
visibility is 51.48%. At epoch 132 (bottom), the estimated sky vis-
ibility is 56.25%

▸
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